Adjoint-based aerodynamic shape optimization on unstructured meshes
نویسندگان
چکیده
In this paper, the exact discrete adjoint of an unstructured finite-volume formulation of the Euler equations in two dimensions is derived and implemented. The adjoint equations are solved with the same implicit scheme as used for the flow equations. The scheme is modified to efficiently account for multiple functionals simultaneously. An optimization framework, which couples an analytical shape parameterization to the flow/adjoint solver and to algorithms for constrained optimization, is tested on airfoil design cases involving transonic as well as supersonic flows. The effect of some approximations in the discrete adjoint, which aim at reducing the complexity of the implementation, is shown in terms of optimization results rather than only in terms of gradient accuracy. The shape-optimization method appears to be very efficient and robust. 2007 Elsevier Inc. All rights reserved.
منابع مشابه
AIAA 2004–0533 Aerodynamic Shape Optimization of Complete Aircraft Configurations using Unstructured Grids
Adjoint based shape optimization methods have proven to be computationally efficient for aerodynamic problems. The majority of the studies on adjoint methods have used structured grids to discretize the computational domain. Due to the potential advantages of unstructured grids for complex configurations, in this study we have developed and validated a continuous adjoint formulation for unstruc...
متن کاملAIAA 2003–3955 A continuous adjoint method for unstructured grids
Adjoint based shape optimization methods have proven to be computationally efficient for aerodynamic problems. The majority of the studies on adjoint methods have used structured grids to discretize the computational domain. Due to the potential advantages of unstructured grids for complex configurations, in this study we have developed and validated a continuous adjoint formulation for unstruc...
متن کاملAnalysis and shape optimization in incompressible flows with unstructured grids
The aim of this study is to develop and validate numerical methods that perform shape optimization in incompressible flows using unstructured meshes. The three-dimensional Euler equations for compressible flow are modified using the idea of artificial compressibility and discretized on unstructured tetrahedral grids to provide estimates of pressure distributions for aerodynamic configurations. ...
متن کاملDiscrete Adjoint Approach for Aerodynamic Sensitivity Analysis and Shape Optimization on Overset Mesh System
In the present talk, the strategies to apply the sensitivity analysis method to aerodynamic shape optimization problems of complex geometries are intensively discussed. To resolve the design of complicated aircraft geometries such as high-lift devices, wing/body configurations, overset mesh techniques are adopted. In addition, a noticeable sensitivity analysis method, adjoint approach, which sh...
متن کاملAerodynamic Design Using Unstructured Meshes
A methodology for performing optimization on 2D and 3D unstructured grids based on the Euler equations is presented. The same, low-memory-cost explicit relaxation algorithm is used to resolve the discrete equations which govern the ow, linearized direct and adjoint problems. The analysis schemes, for both 2D and 3D, are high resolution Local-Extremum-Diminishing (LED) schemes and use Roe decomp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comput. Physics
دوره 224 شماره
صفحات -
تاریخ انتشار 2007